
Projects with UC Irvine Department of Physics & Astronomy (working in the lab of Dr. Daniel Whiteson): 
 
Working with Dr. Whiteson’s group in the UC Irvine 
Department of Physics and Astronomy, I developed 
methods for analyzing data from high-energy particle 
collisions. Results were greater than 90% accuracy 
for high momentum collisions and < 2% error for 
heavy particle reconstruction. 
 
1. Heavy Particle Reconstruction (June 2022 – 
Present): 
 
I developed methods of analyzing properties of 
particles that decay too quickly to be observed by 
detectors. These methods will be used to analyze the 
properties of a hypothetical new fundamental 
particle. 
 
I simulated particle collisions, developed methods, 
and reconstructed heavy intermediate particles. By 
reverse-engineering the decays, I was able to 
reconstruct masses with < 2% error. 
 
MadGraph was used to simulate collisions, Pythia8 
for hadronization, Delphes for detection, and ROOT 
for analysis. Reconstruction programs were written in 
Python and C++ (using functions from the PyROOT 
and ROOT libraries). 
 
Some examples of decays I analyzed are listed below. 
 
Z0 Boson Decay: 
 

A proton – proton collision was simulated, resulting 
in the production of two Z0 bosons, each of which 
decayed into a muon – anti-muon pair. After 
successfully reconstructing leptonic decays, Z0 
bosons were reconstructed from jets with each boson 
decaying into two jets (Fig. 1). 

 
Fig. 1: Results for Z0 jet decay reconstruction. Average 

reconstructed mass is 90.11 GeV, true mass is 91.18 GeV. 
Histogram generated using ROOT. 

 
 
 
 
 

Top Quark Decay: 
 

A proton – proton collision was simulated, resulting 
in the production of a top – anti-top pair. Each top 
quark decayed into a W boson and a bottom quark 
(Fig. 2), resulting in the production of up to 16 jets. 

 
Fig 2: Feynman Diagram for !	 − 	! decay. 

 

An algorithm I devised, and later incorporated the c2 
method from arXiv:2010.09206 (Permutationless 
Many-Jet Event Reconstruction with Symmetry 
Preserving Attention Networks), reconstructed both 
top quarks (Fig. 3). 

 
Fig. 3: Results for ! − ! decay reconstruction. Median 

reconstructed mass is approximately 175 GeV, true mass is 
172.76 GeV. Histogram generated using ROOT. 

 

2. High Momentum Collision Analysis (February 
2022 – June 2022): 
 
Often in High-Energy Physics, large amounts of data 
are available for collisions with low transverse 
momentum (pt), but not for those with high pt. As a 
result, it is difficult to analyze data from collisions 
with high pt because there is not enough data to train 
a machine learning model effectively. I trained neural 
networks on low pt data and analyzed their ability to 
extrapolate to high pt data depending on the 
information they were given. 



We found that parameterized networks perform 
significantly better than unparameterized with 
approximately 90% accuracy and with an ROC AUC 
that was approximately 0.1 greater than their 
unparameterized counterparts (Fig. 7).  
 
Our parameterized networks used pt (Fig. 4) to assist 
in prediction. Two features (f1 and f2) were generated 
as a function of pt and a variable q randomly drawn 
from a normal distribution (Eqs. 1, 2, & 3). 
 

!! = #"#.% + % ∙ #" ∙ (sin(+) − 0.5) + 50 (1) 
!% = #"!.! + % ∙ #" ∙ (cos(+) − 0.5) + 5 (2) 

+	~	5(6 = 0, 8 = &
')  (3) 

 

Three signals were generated: signal source (src), 
signal target (tar), and a background signal. Each data 
point was composed of a pt, f1, and f2 component, 
with signal source having low pt and signal target 
having high pt (Figs. 4 & 5). 

 
Fig. 4: Unweighted pt distributions. 

 

 

 
Fig. 5: Unweighted f1, and f2 distributions. 

 

 

To mask the discriminating power of pt during 
training, sample weights were assigned to each data 
point, reweighting signal source to match background 
(Fig. 6). 

 
Fig. 6: Reweighted pt distributions. 

 

For deep neural network development, Python, 
Tensorflow, and Keras were used. 4 networks were 
constructed. 2 were provided only f1 and f2 as inputs 
(unparameterized), the remaining 2 were provided pt, 
f1, and f2 (parameterized). Each network had a single 
output node (sigmoid output function) indicating the 
probability that the data point was background. 
Building on the work outlined in arXiv:1601.07913 
(Parameterized Machine Learning for High-Energy 
Physics), each network was trained for signal-
background classification between signal source and 
background and evaluated on classification ability 
between signal target and background. Results were 
analyzed using the Area Under the Curve (AUC) of 
Receiver Operating Characteristic (ROC) Curves 
(Fig. 7). 

 

 
Fig. 7: ROC Curves for models. Note that the closer the Area 

Under the ROC Curve (AUC) is to 1, the better the model


