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Abstract

Highly overparameterized models frequently interpolate noisy training data while
still generalizing well, a phenomenon known as benign overfitting. Existing theory
characterizes when interpolation is benign in terms of population spectral structure,
but offers limited guidance on how to predict benign behavior from finite samples.
This work proposes a simple geometry-driven certificate based on a single scalar
of the empirical feature covariance:

dλ(Σ̂) = Tr
[
Σ̂(Σ̂ + λI)−1

]
,

the effective dimension at ridge scale λ. We derive a finite-sample fixed-design
excess-risk bound for ridge regression whose only data-dependent term is dλ(Σ̂),
and give a stability argument showing that dλ(Σ̂) tracks its population analogue
under random design under mild spectral conditions. Empirically, excess risk
exhibits a near-universal dependence on dλ(Σ̂)/N , and a simple spectral score
built from dλ(Σ̂) predicts benign versus non-benign interpolation with AUC ≈ 0.9
across a wide range of aspect ratios and regularization levels. We also outline
an extension of the same spectral geometry to kernel ridge regression and Neural
Tangent Kernel (NTK) models, and discuss why geometry-only certificates can
degrade in predictive power for trained neural networks.

1 Introduction

Classical learning theory associates overparameterization with overfitting: models that interpolate
noisy data are expected to generalize poorly. In contrast, modern practice shows that highly overpa-
rameterized models (including deep neural networks) often fit training data nearly perfectly while
maintaining strong test performance. This phenomenon, known as benign overfitting, is closely
related to double-descent behavior [Belkin et al., 2019].

Recent theory explains benign overfitting in linear and kernel models via the spectral structure of
the data covariance: interpolation can be benign when spectral decay sufficiently controls variance
[Bartlett et al., 2020, Montanari et al., 2021]. Kernel methods and the Neural Tangent Kernel (NTK)
emphasize a similar message: generalization is governed by effective degrees of freedom rather than
raw parameter count [Jacot et al., 2018].

This paper reframes benign overfitting through the lens of certification. Rather than asking when
benign overfitting can occur in principle, we ask a predictive question:

Given a feature matrix X and ridge scale λ, can we compute a simple scalar
from the unlabeled geometry that (i) upper-bounds excess risk under minimal
assumptions, and (ii) predicts whether interpolation will be benign?

We show that the answer is yes: the effective dimension

dλ(Σ̂) = Tr
[
Σ̂(Σ̂ + λI)−1

]
Preprint. Under review.



provides the key control parameter. The claim is not that effective dimension is new, but that it yields
a finite-sample, geometry-only proxy that can be computed directly from a single dataset and used to
rank regimes by benignness.1 Our contributions are:

• A finite-sample fixed-design excess-risk bound for ridge regression whose only data-dependent
term is dλ(Σ̂).

• A stability result showing dλ(Σ̂) concentrates around its population analogue under random
design, without requiring well-conditioned covariances.

• Empirical evidence that risk curves collapse when parameterized by dλ(Σ̂)/N , and that a spectral
score derived from the bound predicts benign interpolation with AUC ≈ 0.9.

• An extension of the same spectral geometry to kernel ridge regression and NTK models, plus an
empirical discussion of where the geometry-only story weakens for trained neural networks.

2 Related Work

Benign overfitting and double descent. The phenomenon of benign overfitting was formalized by
Belkin et al. [2019], who demonstrated that test error can decrease beyond the interpolation threshold.
Bartlett et al. [2020] provided sharp conditions for benign overfitting in linear regression, showing that
covariance spectral decay governs the excess risk of minimum-norm interpolants. High-dimensional
asymptotics and extensions to classification refine this picture [Montanari et al., 2021].

Implicit bias and algorithms. Benign overfitting depends on both data and algorithm. Chatterji
et al. [2022] analyze how implicit bias in optimization interacts with benign overfitting in overpa-
rameterized networks. In contrast, our certificate is deliberately conservative: it is designed to hold
uniformly over all targets consistent with a norm bound, and therefore need not match the perfor-
mance of implicitly regularized algorithms. This conservatism is a feature (it enables certification),
but also highlights a limitation when algorithmic effects dominate geometry.

Effective dimension. Effective degrees of freedom appear throughout classical statistics for linear
smoothers, ridge regression, and model selection [Hastie et al., 2009]. Their behavior in adaptive and
high-dimensional regimes has been examined critically [Janson, 2015, Tibshirani, 2015]. We revisit
effective dimension as a scale-dependent spectral summary that simultaneously (i) controls a clean
finite-sample bound, and (ii) empirically collapses risk curves in overparameterized regimes.

Kernels and NTKs. Kernel methods provide an inherently spectral view of generalization. The
NTK framework shows that infinitely wide neural networks trained by gradient descent behave like
kernel methods [Jacot et al., 2018]. Our extension of the certificate to kernel/NTK settings connects
these perspectives through the same effective-dimension geometry, while our empirical discussion
emphasizes that NTK-at-initialization can be a weak predictor of post-training generalization for
finite networks.

3 Setup and Effective Dimension

We study supervised regression with a feature map ϕ(x) ∈ Rp and the realizable model

y = ϕ(x)⊤θ⋆ + ε, E[ε | x] = 0, E[ε2 | x] ≤ σ2, ∥θ⋆∥2 ≤ B. (1)

Given samples (xi, yi)
N
i=1, let X ∈ RN×p be the feature matrix with rows ϕ(xi)

⊤, and define the
empirical covariance

Σ̂ =
1

N
X⊤X.

1Here, we define an order on benignness as ordering by excess test risk.
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3.1 Ridge regression and two risks

The ridge estimator is then

θ̂λ = (Σ̂ + λI)−1 1

N
X⊤y, λ > 0.

We distinguish:

• Fixed-design prediction error (conditioning on X):

Efd(θ;X) =
1

N
∥X(θ − θ⋆)∥22 = (θ − θ⋆)⊤Σ̂(θ − θ⋆).

• Population prediction error (random design with covariance Σ = E[ϕ(x)ϕ(x)⊤]):

R(θ) = Ex

[
(ϕ(x)⊤(θ − θ⋆))2

]
= (θ − θ⋆)⊤Σ(θ − θ⋆).

Our main theorem is fixed-design; we then argue that its geometry term is stable and therefore
predictive for held-out/test behavior under random design.

3.2 Effective dimension

Definition 1 (Effective dimension). For a PSD matrix M and λ > 0, define

dλ(M) = Tr
[
M(M + λI)−1

]
.

If M has eigenvalues (µi)i, then dλ(M) =
∑

i µi/(µi + λ): directions with µi ≫ λ contribute
nearly 1 and directions with µi ≪ λ contribute nearly 0.

4 Spectral Risk Bound and Certificate

Theorem 1 (Fixed-design spectral bound). Under (1), for all λ > 0,

E
[
Efd(θ̂λ;X) | X

]
≤ λB2 +

σ2

N
dλ(Σ̂). (2)

Proof sketch. Write y = Xθ⋆ + ε with E[ε | X] = 0 and E[εε⊤ | X] ⪯ σ2I . Using θ̂λ =

(Σ̂ + λI)−1 1
NX⊤y and Σ̂ = 1

NX⊤X , we obtain

θ̂λ − θ⋆ = −λ(Σ̂ + λI)−1θ⋆ + (Σ̂ + λI)−1 1

N
X⊤ε.

Plugging into Efd(θ;X) = (θ − θ⋆)⊤Σ̂(θ − θ⋆) yields a bias–variance decomposition after condi-
tioning on X (the cross term vanishes by zero-mean noise). The bias term satisfies

λ2(θ⋆)⊤(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1θ⋆ ≤ λ∥θ⋆∥22 ≤ λB2,

using the eigenwise inequality λ2µ/(µ + λ)2 ≤ λ. For the variance term, diagonalize Σ̂ =
Udiag(µ̂i)U

⊤ and bound

1

N
E
[
ε⊤X(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1X⊤ε

∣∣X]
≤ σ2

N

∑
i

µ̂2
i

(µ̂i + λ)2
≤ σ2

N

∑
i

µ̂i

µ̂i + λ
=

σ2

N
dλ(Σ̂).

A geometry-driven certificate (up to scale). Motivated by Theorem 1, define the spectral certifi-
cate

Rb
λ(X) := λB2 +

σ2

N
dλ(Σ̂). (3)

The certificate is data-dependent only through the unlabeled geometry dλ(Σ̂). The remaining factors
B and σ2 are scale parameters; in synthetic experiments they are known, and in applications one can
treat them as hyperparameters or estimate them. For ranking regimes by benignness, the geometry
term typically drives most of the variation across aspect ratios and λ.
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5 Random-Design Stability

We now explain why dλ(Σ̂) is a stable proxy for population geometry under random design. Assume
ϕ(x) is mean-zero sub-Gaussian with covariance Σ = E[ϕ(x)ϕ(x)⊤], and x1, . . . , xN are i.i.d.
Lemma 1 (Stability via nuclear norm). For any PSD matrices A,B and λ > 0,

|dλ(A)− dλ(B)| ≤ 1

λ
∥A−B∥∗,

where ∥ · ∥∗ is the nuclear norm. Then,

|dλ(A)− dλ(B)| ≤ 1

λ
reff(A,B) ∥A−B∥op,

where reff(A,B) is any quantity satisfying ∥A − B∥∗ ≤ reff(A,B)∥A − B∥op (e.g., an effective
rank induced by spectral decay).

Corollary. Standard matrix concentration bounds yield ∥Σ̂ − Σ∥op = OP(N
−1/2) under sub-

Gaussian assumptions. Lemma 1 then implies that for fixed λ, dλ(Σ̂) concentrates around dλ(Σ)

provided the spectrum is not too “diffuse” relative to λ (formally, reff(Σ̂,Σ)/λ is controlled). This is
the same spectral regime where ridge is well-behaved and where benign overfitting theory is typically
phrased in terms of spectral decay.

6 Empirical Evaluation

We evaluate the predictive power and limitations of the spectral certificate. Our experiments address
three questions: (i) whether excess risk exhibits a universal dependence on effective dimension, (ii)
how conservative the certificate is as an upper bound, and (iii) whether the spectral score reliably
discriminates benign from non-benign interpolation.

6.1 Experimental protocol

We generate features x ∼ N (0,Σ) where Σ has a power-law spectrum λj(Σ) = j−γ . We vary the
spectral decay γ ∈ {0.5, 1.0, 1.5}, the aspect ratio α = p/N ∈ [0.1, 10], and the ridge regularization
λ. The target θ⋆ is drawn uniformly from the sphere of radius B =

√
p, and label noise is ε ∼ N (0, 1).

All results represent the mean of 20 independent trials. Code for full reproducibility is available at
github.com/divitr/241_proj.

6.2 Risk collapse under effective dimension

Across all settings, prediction error curves collapse when plotted as a function of dλ(Σ̂)/N . For
dλ/N ≪ 1, error scales approximately linearly with dλ/N (Figure 1). As dλ/N approaches 1, error
peaks, reflecting the interpolation threshold, and then decreases again as λ increases. This collapse
holds across a wide range of aspect ratios and covariance spectra, supporting the claim that dλ is the
correct geometric control parameter.

6.3 Tightness and conservatism of the certificate

We next compare realized prediction error to the certificate Rb
λ. Empirically, Rb

λ upper-bounds
observed error and is typically within a modest multiplicative factor (Figure 2). This conservatism is
expected: Theorem 1 is a worst-case bound over all targets with ∥θ⋆∥2 ≤ B and does not exploit
favorable spectral alignment or algorithmic implicit regularization. Despite this, the geometry term
dλ(Σ̂) tracks error tightly across regimes, yielding strong correlation.

6.4 Predicting benign interpolation

Finally, we treat benign interpolation as a binary classification problem: a run is labeled benign if
its prediction error falls below a fixed tolerance. Using Rb

λ as a score, we compute ROC curves
(Figure 3) across all trials. The certificate achieves an AUC of approximately 0.90, substantially
outperforming baselines such as dλ/N alone, 1/N , or Tr(Σ̂).
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Figure 1: Risk collapse under effective dimension. Held-out prediction error plotted against the
normalized effective dimension dλ(Σ̂)/N for aspect ratios α = p/N ∈ {0.5, 0.8, 1.0, 1.2, 1.5, 2.0}.
Across widths and regularization levels, curves collapse onto a common geometry-driven profile:
approximately linear growth for dλ/N ≪ 1, a pronounced peak near dλ/N ≈ 1 (the interpolation
threshold), and decreasing error as λ increases. This collapse supports the view that effective
dimension, rather than raw parameter count, governs generalization.

6.5 When the geometry-only certificate weakens for neural networks

To test whether the same geometric intuition extends beyond linear models, we also computed
NTK-based certificates for neural networks (width = 1024), using the NTK at initialization as the
kernel. The results are generally disappointing: while the NTK certificate can appear better calibrated
as an upper bound in some regimes (roughly ∼ 2× gaps in our pilot runs, versus ∼ 3× for linear
models), its predictive power is weak (R2 ≈ 0.13) and its discrimination can be worse than trivial
baselines (AUC ≈ 0.71 versus ≈ 0.96 for simply using sample size N ).2

This failure is informative and suggests that, for trained neural networks, generalization is often not
determined by initialization-time kernel geometry alone:

• Optimization dynamics can dominate geometry. Implicit regularization from gradient descent
(and architectural inductive bias) can matter more than the eigenstructure of the initialization
NTK.

• Initialization need not reflect the trained model. The NTK at initialization can be a poor proxy
for the representation learned during training, especially outside the strict lazy-training regime.

• In extreme overparameterization, variation washes out. When width ≫ N , many runs
interpolate nearly perfectly and differences in kernel geometry may not translate into meaningful
differences in test error.

This leads us to believe that geometry-based certificates likely require algorithmic awareness: in-
corporating optimization and representation learning, not just the data geometry encoded by a fixed
kernel.

2These neural-network numbers are reported from a small pilot using the same evaluation pipeline; we
include them to highlight failure modes. It is also possible that for the widths we tested (restricted to 1024
due to computational limitations) that the network was still too deep in the feature learning regime, against the
theoretical assumptions.
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Figure 2: Unlabeled geometry predicts excess risk. Held-out prediction error plotted
against the spectral certificate Rb

λ = λB2 + (σ2/N) dλ(Σ̂) across aspect ratios α = p/N ∈
{0.5, 0.8, 1.0, 1.2, 1.5, 2.0}. The dashed black line denotes perfect prediction (y = x), while the
dashed red line corresponds to a 5× multiplicative gap. Most points lie between these lines, indicating
that the certificate upper-bounds realized risk within a modest constant factor over several orders
of magnitude. The certificate depends on the design only through dλ(Σ̂), yet captures most of the
variation in generalization performance. (r2 = 0.87)

6.6 Summary

Overall, the experiments validate the theoretical picture in the kernel regime. Effective dimension
governs a large fraction of the variability in generalization across aspect ratios and regularization
levels. The certificate is conservative (by design), but remains highly predictive as a scalar score for
benignness in the linear setting; for neural networks, naive NTK-based extensions can lose predictive
power, motivating future work that integrates training dynamics.

7 Extensions to Kernels and NTKs

The same spectral geometry extends to kernel ridge regression. Given a kernel matrix K ∈ RN×N

with entries Kij = k(xi, xj), kernel ridge regression solves

f̂λ = arg min
f∈Hk

1

N

N∑
i=1

(yi − f(xi))
2 + λ∥f∥2Hk

,

and the effective degrees of freedom take the form dλ(K) = Tr[K(K + NλI)−1] (up to the
conventional Nλ scaling). Analogously, in the infinite-width limit, neural networks trained by
gradient descent correspond to kernel methods with the NTK KNTK [Jacot et al., 2018], yielding an
NTK-based certificate of the same form:

Rb,NTK
λ = λB2 +

σ2

N
dλ(KNTK),
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Figure 3: Predicting benign interpolation from unlabeled geometry. ROC curves for classifying
runs as benign (prediction error < 0.05) using different scalar predictors. The spectral certificate
Rb

λ achieves AUC ≈ 0.90, substantially outperforming normalized effective dimension dλ/N (AUC
≈ 0.48), classical 1/N scaling (AUC ≈ 0.25), and total variance Tr(Σ̂) (AUC ≈ 0.62). Despite
being conservative as a bound, the certificate is highly effective at ranking regimes by benignness.

with the same interpretation: benignness is governed by effective dimension at the appropriate ridge
scale. Section 6.5 emphasizes that for finite-width, feature-learning networks, using the initialization
NTK alone can be a weak predictor of post-training generalization.

8 Conclusion

Effective dimension provides a simple, stable, and predictive geometric control parameter for benign
overfitting in ridge regression. The resulting spectral certificate depends on the unlabeled design only
through dλ(Σ̂), is theoretically grounded via a finite-sample fixed-design bound, and is empirically
accurate for predicting benign versus non-benign interpolation across a wide range of regimes. Ex-
tensions to kernels and NTKs suggest a unifying spectral-geometric view of benign overfitting, while
the neural-network pilot highlights that bridging to real nets likely requires integrating optimization
dynamics and representation learning into the certificate.
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