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Classical intuition: More parameters = more overfitting.
Modern ML:
= Deep / overparameterized models (p > N) often interpolate and still generalize.

= Some interpolating solutions are benign, others catastrophic.

» Width or sample size alone do not predict which.
Question. Can we predict benign vs non-benign interpolation using only the unlabeled feature matrix X7
Thesis. Generalization is controlled by a simple spectral quantity of the feature covariance, not by p or N in isolation.

Setup and Certificate

Model. Fixed features ¢(x) € RP and realizable linear regression
y=¢(x)"0"+¢ Ele|x] =0, E[2|x] <o? |62 < B.

With N samples, X € RNXP empirical covariance ¥ = HXTX, population ¥ = E[¢(x)p(x)"].

Ridge predictor. R R
Or=(Z+AN)TEXTy.

Effective dimension.

Sy e _ 0
A(D)=Tr(Z(Z+ AN H == .

Directions with fi; > A contribute ~ 1 (active DoF); directions with fi; < X contribute ~ 0 (frozen).

Spectral Risk Certificate
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Ra= AB2  + —dy(T
A v NE)
worst-case bias —
variance from geometry

Computable from X alone (unlabeled geometry).

Spectral Intuition

Let & = p/N and consider small A:

N N = min(a, 1).
» a<lidy/NTaas\—0.
= a>1:d\/N11 and saturates (only N samples).
= dy/N = 1: effective DoF ~ sample size — the interpolation threshold.
Classical formulas suggest SN
v 2

which blows up at d\/N = 1.
Prediction: In (d)/N, risk) coordinates:

= Nearly linear scaling of risk with d\/N away from 1.

= A vertical “spike” near d\/N =1 (double-descent peak).

Bias—Variance Decomposition & Main Theorem

Excess empirical prediction error
Eemp(0; X) = lIX (0 = 0713 = (0 — ") 'Z(0 — 0).
For ridge @\A, let A, = @\)\ — ¢*. Conditioned on X,
E[Eemp(fr; X) | X] = Bias2(X) + Var,(X).
Theorem 1 (Fixed-design spectral risk bound).
Assume [|0*|l, < B and E[ee" | X] < ¢2ly. Then for all A > 0,
~ 0'2 ~
E[€emp(fx; X) | X] < AB* + N hE).

Proof sketch:

» Express A) in eigenbasis of 5.

= Show Bias3(X) = A20* (X 4+ M) 1Z(T + M) 10* < AB2
= Show Var,(X) < (62/N)Tr[Z2(E + A1) 73 < (02/N)d\(%).

Interpretation. Conservative: if 7/@ is small, then risk is small even in the worst orientation of 8*. When the variance term
dominates, risk ~ (02/N)dy, giving the linear trend in the collapse plot.

Certificate Stability in Random Design

Assume sub-Gaussian features with parameter k.
Lemma (Lipschitz stability). If ||~ — X|o, <6, then

~ ) ~
|d\(X) — di\(2)] < 3 rank(X + X).

Lemma (Covariance concentration). w.p. > 1 — 7,

IZ — Zllop < G J Tr/(vz) N J 'Og(l\ll/n)

Corollary (Effective-dimension concentration). Combining the two,
d\(Z) &~ d\(X) with high probability.
Spectral certificate. The empirical quantity
— 0‘2 ~
Ry = \B* + H(E)
concentrates around the population bound R5”® = AB2 + % d\(X).

= Works in p 3> N (no assumption on Amin(2)).

» If the certificate is small, both empirical and population risks are small: and we have a scalar certificate of benignness.

Empirical Validation: Geometry Predicts Benign Interpolation

2. ROC: Benign vs Non-Benign
Predicting Benign Interpolation (threshold = 0.05)

3. Certificate vs Actual Risk
Unlabeled Geometry Predicts Excess Risk

False Positive Rate

Certificate (unlabeled geometry)
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We label a model as benign if its test excess risk is below 0.05. The spectral certificate R (blue/orange,
AUC = 0.90) strongly outperforms:

Each point is one trained model (various o and \). X-axis: R (unlabeled geometry). Y-axis: test excess
risk. Most points lie between y = x (black) and y = 5x (red): the certificate upper-bounds risk within a

small constant factor over three orders of magnitude. r?> ~ .83.

1. Risk vs Effective Dimension
Risk Collapse: Excess Risk vs d(Z)/N
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Excess risk vs. d\(X)/N across aspect ratios « = p/N and regularization A\. Away from d\/N =~ 1, all ,//
points lie on an almost linear trend predicted by (¢2/N)dy. The tall column at dy/N = 1 is the predicted 007, 02 04
interpolation “singularity”.
= effective dimension alone dy/N (AUC = 0.438)
= classical 1/N scaling (AUC =~ 0.25)
= total variance Tr(X) (AUC =~ 0.62).

Summary, Contributions, and Outlook

Main takeaways. Future directions.

= A single scalar = Apply spectral certificates to full deep nets (beyond last-layer linearization).

o~ 2 o~
Ry = \B? + %d)\(Z) = Study robustness to label noise, distribution shift, and heavy-tailed features.

computed from unlabeled features serves as a spectral certificate of benign generalization. = Unsupervised choice of A from spectral geometry alone.

» Risk curves across widths and regularization collapse when parameterized by effective degrees of freedom dy/N, with a universal spike at dy/N ~ 1. » Connections to NTK, kernel methods, and information-theoretic capacity measures.

= Width and sample size matter only through the spectrum of the learned representation. Stat mech view.

Contributions. = 02/N = temperature / noise power.

~

1. A finite-sample bias—variance bound for ridge depending only on dy(X), valid for p > N. = d\ counts active degrees of freedom.

2. Concentration results showing that the empirical certificate tracks the ideal population bound without relying on Amin(Z). = Benign interpolation arises when both energy (AB?) and thermal fluctuations (02/N)d) are small.

3. Empirical evidence that the certificate almost linearly parameterizes risk and achieves AUC & 0.9 for predicting benign vs non-benign interpolation.




