

Predicting Benign Overfitting via Spectral Geometry

Divit Rawal

UC Berkeley

Motivation

Classical intuition: More parameters \Rightarrow more overfitting.

Modern ML:

- Deep / overparameterized models ($p \gg N$) often interpolate and still generalize.
- Some interpolating solutions are *benign*, others *catastrophic*.
- Width or sample size alone do not predict which.

Question. Can we predict benign vs non-benign interpolation using only the unlabeled feature matrix X ?

Thesis. Generalization is controlled by a simple spectral quantity of the feature covariance, not by p or N in isolation.

Setup and Certificate

Model. Fixed features $\phi(x) \in \mathbb{R}^p$ and realizable linear regression

$$y = \phi(x)^\top \theta^* + \varepsilon, \quad \mathbb{E}[\varepsilon | x] = 0, \quad \mathbb{E}[\varepsilon^2 | x] \leq \sigma^2, \quad \|\theta^*\|_2 \leq B.$$

With N samples, $X \in \mathbb{R}^{N \times p}$, empirical covariance $\hat{\Sigma} = \frac{1}{N} X^\top X$, population $\Sigma = \mathbb{E}[\phi(x)\phi(x)^\top]$.

Ridge predictor.

$$\hat{\theta}_\lambda = (\hat{\Sigma} + \lambda I)^{-1} \frac{1}{N} X^\top y.$$

Effective dimension.

$$d_\lambda(\hat{\Sigma}) \doteq \text{Tr}(\hat{\Sigma}(\hat{\Sigma} + \lambda I)^{-1}) = \sum_j \frac{\hat{\mu}_j}{\hat{\mu}_j + \lambda}.$$

Directions with $\hat{\mu}_j \gg \lambda$ contribute ≈ 1 (active DoF); directions with $\hat{\mu}_j \ll \lambda$ contribute ≈ 0 (frozen).

Spectral Risk Certificate

$$\hat{\mathcal{R}}_\lambda \doteq \underbrace{\lambda B^2}_{\text{worst-case bias}} + \underbrace{\frac{\sigma^2}{N} d_\lambda(\hat{\Sigma})}_{\text{variance from geometry}}$$

Computable from X alone (unlabeled geometry).

Spectral Intuition

Let $\alpha = p/N$ and consider small λ :

$$\frac{d_\lambda(\hat{\Sigma})}{N} \approx \frac{\min(p, N)}{N} = \min(\alpha, 1).$$

- $\alpha < 1$: $d_\lambda/N \uparrow \alpha$ as $\lambda \rightarrow 0$.
- $\alpha > 1$: $d_\lambda/N \uparrow 1$ and **saturates** (only N samples).
- $d_\lambda/N \approx 1$: effective DoF \approx sample size — the interpolation threshold.

Classical formulas suggest

$$\text{Var} \sim \frac{d_\lambda/N}{1 - d_\lambda/N},$$

which blows up at $d_\lambda/N = 1$.

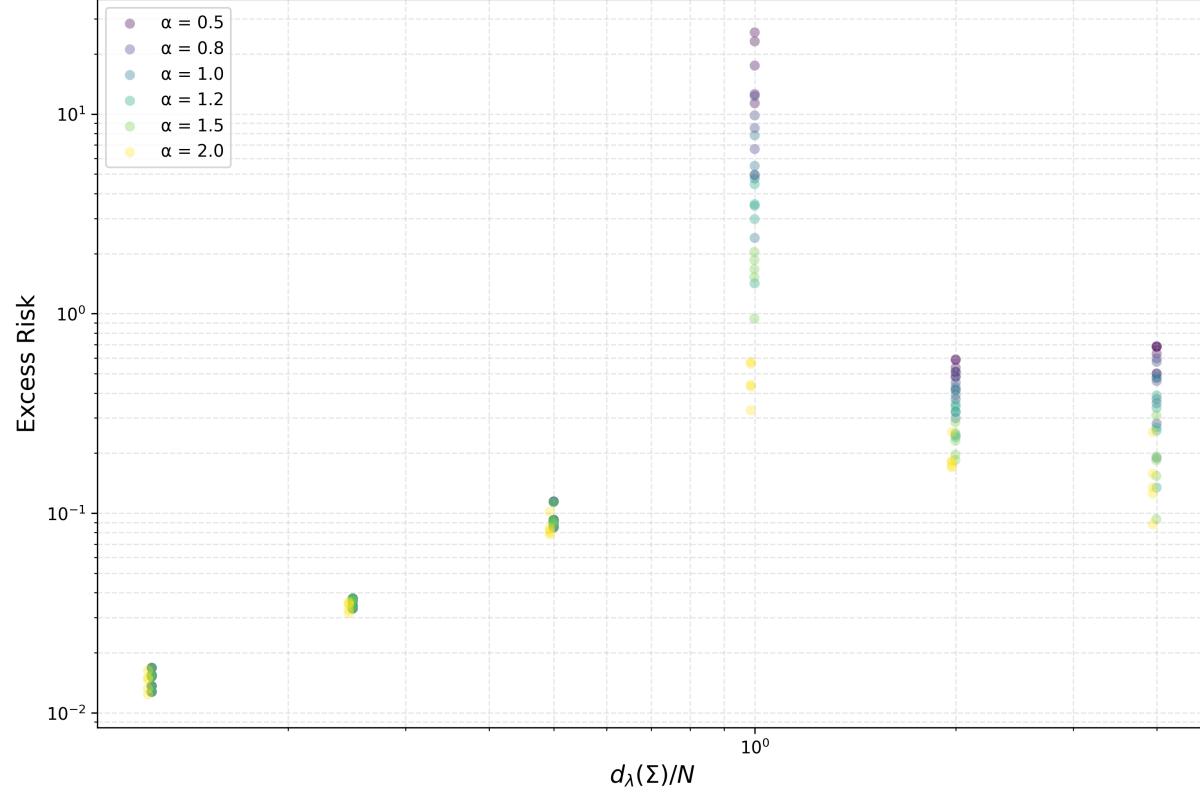
Prediction: In $(d_\lambda/N, \text{risk})$ coordinates:

- Nearly linear scaling of risk with d_λ/N away from 1.
- A vertical "spike" near $d_\lambda/N = 1$ (double-descent peak).

Empirical Validation: Geometry Predicts Benign Interpolation

1. Risk vs Effective Dimension

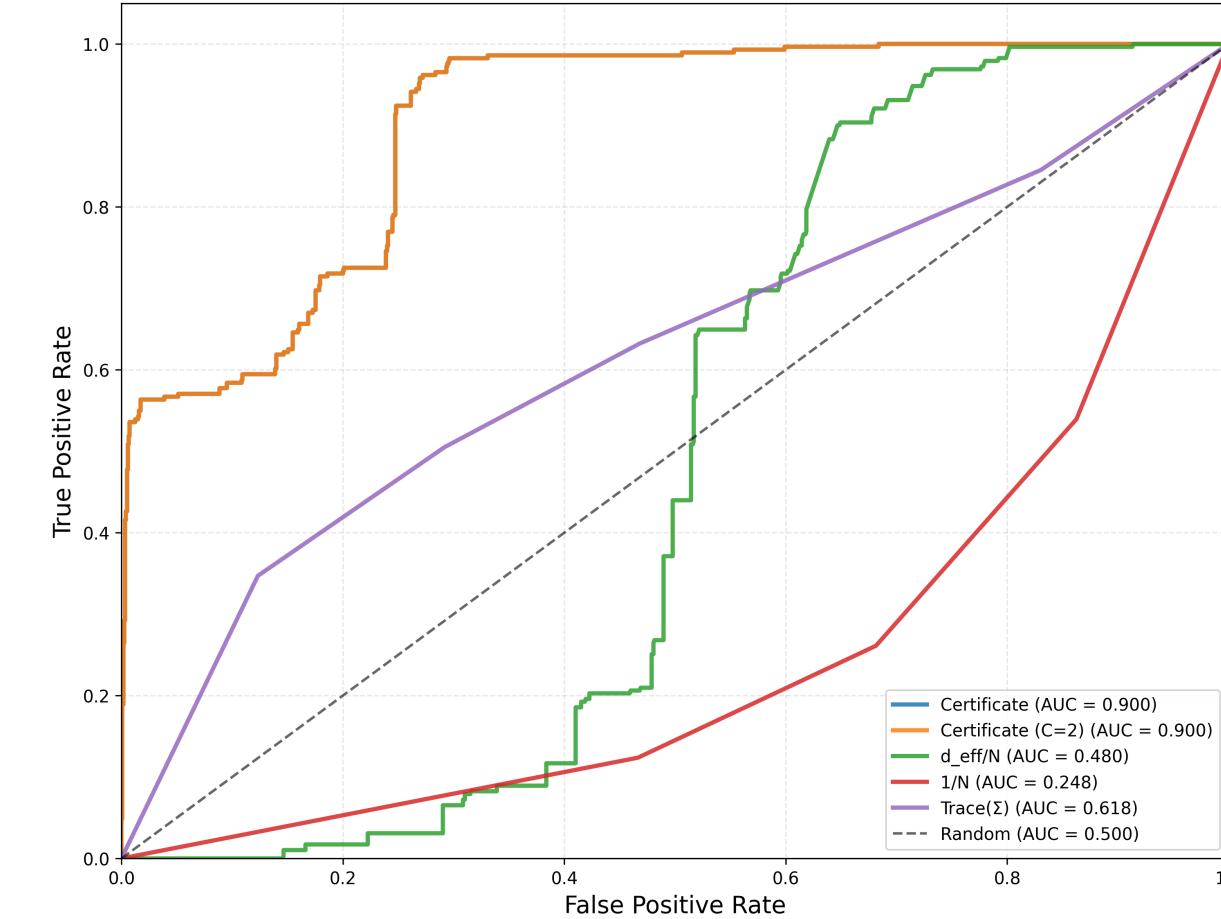
Risk Collapse: Excess Risk vs $d_\lambda(\Sigma)/N$



Excess risk vs. $d_\lambda(\Sigma)/N$ across aspect ratios $\alpha = p/N$ and regularization λ . Away from $d_\lambda/N \approx 1$, all points lie on an almost linear trend predicted by $(\sigma^2/N)d_\lambda$. The tall column at $d_\lambda/N \approx 1$ is the predicted interpolation "singularity".

2. ROC: Benign vs Non-Benign

Predicting Benign Interpolation (threshold = 0.05)

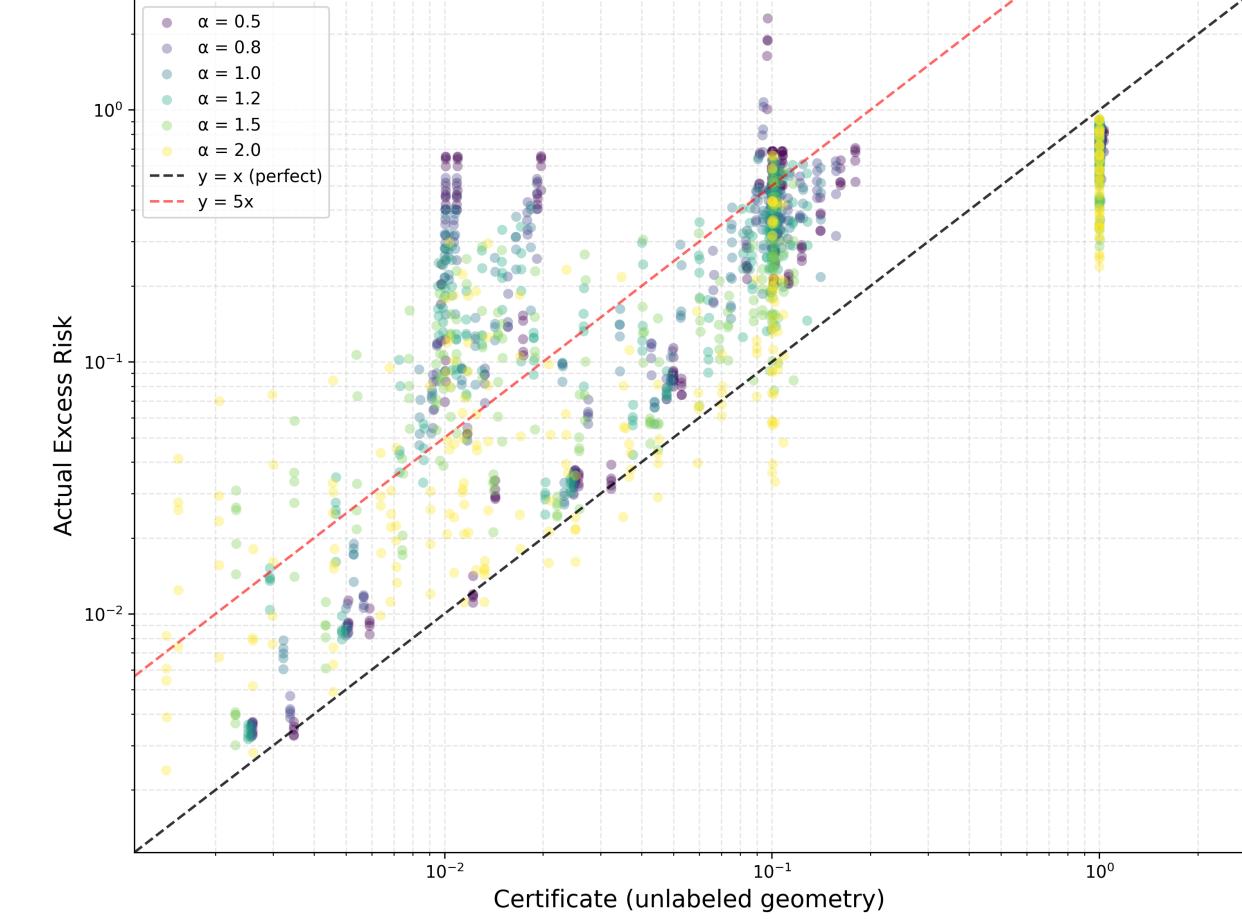


We label a model as benign if its test excess risk is below 0.05. The spectral certificate $\hat{\mathcal{R}}_\lambda$ (blue/orange, $\text{AUC} \approx 0.90$) strongly outperforms:

- effective dimension alone d_λ/N ($\text{AUC} \approx 0.48$)
- classical $1/N$ scaling ($\text{AUC} \approx 0.25$)
- total variance $\text{Tr}(\Sigma)$ ($\text{AUC} \approx 0.62$).

3. Certificate vs Actual Risk

Unlabeled Geometry Predicts Excess Risk



Each point is one trained model (various α and λ). X-axis: $\hat{\mathcal{R}}_\lambda$ (unlabeled geometry). Y-axis: test excess risk. Most points lie between $y = x$ (black) and $y = 5x$ (red): the certificate upper-bounds risk within a small constant factor over three orders of magnitude. $r^2 \approx .83$.

Summary, Contributions, and Outlook

Main takeaways.

- A single scalar

$$\hat{\mathcal{R}}_\lambda = \lambda B^2 + \frac{\sigma^2}{N} d_\lambda(\hat{\Sigma})$$

computed from unlabeled features serves as a spectral certificate of benign generalization.

- Risk curves across widths and regularization collapse when parameterized by effective degrees of freedom d_λ/N , with a universal spike at $d_\lambda/N \approx 1$.
- Width and sample size matter only through the spectrum of the learned representation.

Contributions.

1. A finite-sample bias-variance bound for ridge depending only on $d_\lambda(\hat{\Sigma})$, valid for $p \gg N$.
2. Concentration results showing that the empirical certificate tracks the ideal population bound without relying on $\lambda_{\min}(\hat{\Sigma})$.
3. Empirical evidence that the certificate almost linearly parameterizes risk and achieves $\text{AUC} \approx 0.9$ for predicting benign vs non-benign interpolation.

Future directions.

- Apply spectral certificates to full deep nets (beyond last-layer linearization).
- Study robustness to label noise, distribution shift, and heavy-tailed features.
- Unsupervised choice of λ from spectral geometry alone.
- Connections to NTK, kernel methods, and information-theoretic capacity measures.

Stat mech view.

- $\sigma^2/N \approx$ temperature / noise power.
- d_λ counts active degrees of freedom.
- Benign interpolation arises when both energy (λB^2) and thermal fluctuations ($\sigma^2/N)d_\lambda$ are small.