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Motivation
Classical intuition: More parameters ⇒ more overfitting.
Modern ML:
• Deep / overparameterized models (p ≫ N) often interpolate and still generalize.

• Some interpolating solutions are benign, others catastrophic.

• Width or sample size alone do not predict which.
Question. Can we predict benign vs non-benign interpolation using only the unlabeled feature matrix X?
Thesis. Generalization is controlled by a simple spectral quantity of the feature covariance, not by p or N in isolation.

Setup and Certificate

Model. Fixed features ϕ(x) ∈ Rp and realizable linear regression

y = ϕ(x)⊤θ⋆ + ε, E[ε | x ] = 0, E[ε2 | x ] ≤ σ2, ∥θ⋆∥2 ≤ B.

With N samples, X ∈ RN×p, empirical covariance Σ̂ = 1
N X⊤X , population Σ = E[ϕ(x)ϕ(x)⊤].

Ridge predictor.
θ̂λ = (Σ̂ + λI)−1 1

N X⊤y .

Effective dimension.
dλ(Σ̂) .= Tr

(
Σ̂(Σ̂ + λI)−1)

=
∑

j

µ̂j
µ̂j + λ

.

Directions with µ̂j ≫ λ contribute ≈ 1 (active DoF); directions with µ̂j ≪ λ contribute ≈ 0 (frozen).

Spectral Risk Certificate

R̂λ
.= λB2︸︷︷︸

worst-case bias

+ σ2

N dλ(Σ̂)︸ ︷︷ ︸
variance from geometry

Computable from X alone (unlabeled geometry).

Spectral Intuition

Let α = p/N and consider small λ:
dλ(Σ̂)

N ≈ min(p, N)
N = min(α, 1).

• α < 1: dλ/N ↑ α as λ → 0.

• α > 1: dλ/N ↑ 1 and saturates (only N samples).

• dλ/N ≈ 1: effective DoF ≈ sample size — the interpolation threshold.

Classical formulas suggest
Var ∼ dλ/N

1 − dλ/N ,

which blows up at dλ/N = 1.
Prediction: In (dλ/N, risk) coordinates:

• Nearly linear scaling of risk with dλ/N away from 1.

• A vertical “spike” near dλ/N = 1 (double-descent peak).

Bias–Variance Decomposition & Main Theorem

Excess empirical prediction error

Eemp(θ; X ) = 1
N ∥X (θ − θ⋆)∥2

2 = (θ − θ⋆)⊤Σ̂(θ − θ⋆).

For ridge θ̂λ, let ∆λ = θ̂λ − θ⋆. Conditioned on X ,

E[Eemp(θ̂λ; X ) | X ] = Bias2
λ(X ) + Varλ(X ).

Theorem 1 (Fixed-design spectral risk bound).
Assume ∥θ⋆∥2 ≤ B and E[εε⊤ | X ] ⪯ σ2IN . Then for all λ > 0,

E[Eemp(θ̂λ; X ) | X ] ≤ λB2 + σ2

N dλ(Σ̂).

Proof sketch:

• Express ∆λ in eigenbasis of Σ̂.
• Show Bias2

λ(X ) = λ2θ⋆⊤(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1θ⋆ ≤ λB2.
• Show Varλ(X ) ≤ (σ2/N)Tr[Σ̂2(Σ̂ + λI)−2] ≤ (σ2/N)dλ(Σ̂).

Interpretation. Conservative: if R̂λ is small, then risk is small even in the worst orientation of θ⋆. When the variance term
dominates, risk ≈ (σ2/N)dλ, giving the linear trend in the collapse plot.

Certificate Stability in Random Design

Assume sub-Gaussian features with parameter κ.
Lemma (Lipschitz stability). If ∥Σ̂ − Σ∥op ≤ δ, then

|dλ(Σ̂) − dλ(Σ)| ≤ δ

λ
rank(Σ + Σ̂).

Lemma (Covariance concentration). w.p. ≥ 1 − η,

∥Σ̂ − Σ∥op ≤ Cκ


√√√√Tr(Σ)

N +
√√√√ log(1/η)

N

 .

Corollary (Effective-dimension concentration). Combining the two,

dλ(Σ̂) ≈ dλ(Σ) with high probability.

Spectral certificate. The empirical quantity

R̂λ = λB2 + σ2

N dλ(Σ̂)

concentrates around the population bound Rpop
λ = λB2 + σ2

N dλ(Σ).

• Works in p ≫ N (no assumption on λmin(Σ̂)).
• If the certificate is small, both empirical and population risks are small: and we have a scalar certificate of benignness.

Empirical Validation: Geometry Predicts Benign Interpolation
1. Risk vs Effective Dimension

Excess risk vs. dλ(Σ)/N across aspect ratios α = p/N and regularization λ. Away from dλ/N ≈ 1, all
points lie on an almost linear trend predicted by (σ2/N)dλ. The tall column at dλ/N ≈ 1 is the predicted

interpolation “singularity”.

2. ROC: Benign vs Non-Benign

We label a model as benign if its test excess risk is below 0.05. The spectral certificate R̂λ (blue/orange,
AUC ≈ 0.90) strongly outperforms:

• effective dimension alone dλ/N (AUC ≈ 0.48)
• classical 1/N scaling (AUC ≈ 0.25)
• total variance Tr(Σ) (AUC ≈ 0.62).

3. Certificate vs Actual Risk

Each point is one trained model (various α and λ). X-axis: R̂λ (unlabeled geometry). Y-axis: test excess
risk. Most points lie between y = x (black) and y = 5x (red): the certificate upper-bounds risk within a

small constant factor over three orders of magnitude. r2 ≈ .83.

Summary, Contributions, and Outlook
Main takeaways.

• A single scalar
R̂λ = λB2 + σ2

N dλ(Σ̂)

computed from unlabeled features serves as a spectral certificate of benign generalization.

• Risk curves across widths and regularization collapse when parameterized by effective degrees of freedom dλ/N, with a universal spike at dλ/N ≈ 1.

• Width and sample size matter only through the spectrum of the learned representation.

Contributions.

1. A finite-sample bias–variance bound for ridge depending only on dλ(Σ̂), valid for p ≫ N.

2. Concentration results showing that the empirical certificate tracks the ideal population bound without relying on λmin(Σ̂).

3. Empirical evidence that the certificate almost linearly parameterizes risk and achieves AUC ≈ 0.9 for predicting benign vs non-benign interpolation.

Future directions.

• Apply spectral certificates to full deep nets (beyond last-layer linearization).

• Study robustness to label noise, distribution shift, and heavy-tailed features.

• Unsupervised choice of λ from spectral geometry alone.

• Connections to NTK, kernel methods, and information-theoretic capacity measures.

Stat mech view.

• σ2/N ≈ temperature / noise power.

• dλ counts active degrees of freedom.

• Benign interpolation arises when both energy (λB2) and thermal fluctuations (σ2/N)dλ are small.


