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Abstract

We present a spectrum-adaptive randomized SVD framework for efficient compression of dense
document and query embeddings. Our method employs a single-pass randomized power-iteration
SVD with a final QR factorization to recover the top-k singular subspace in O(mdk) time and
O(mk) space. To eliminate the need for a predetermined rank, we introduce an adaptive block-
incremental variant that uses approximate leverage-weighted Gaussian probes and monitors the
residual spectral norm to halt when a user-specified distortion is achieved. On standard retrieval
benchmarks, our approach matches or exceeds the recall of truncated SVD and outperforms popular
ANN methods (LSH, PQ) at a fraction of the preprocessing cost, while providing a provable worst-case
inner-product distortion bound. These results demonstrate that spectrum-adaptive randomized SVD
offers a principled, high-fidelity alternative for compressed nearest-neighbor search in large-scale
retrieval systems.

1 Introduction

Modern information retrieval and question-answering systems rely heavily on dense-vector embeddings: each document
and user query is encoded by a pretrained transformer into a high-dimensional vector, and retrieval reduces to ranking
these embeddings by a similarity metric. While this paradigm enables powerful zero-shot capabilities, it also presents
two fundamental challenges: the computational cost of indexing and search at scale, and the preservation of retrieval
quality under approximation.

A corpus of millions of documents produces an embedding matrix of gigabyte scale. A naïve brute-force cosine
similarity search requires O(md) multiply–add operations per query — infeasibly expensive as both the corpus size m
and embedding dimension d increase. Moreover, maintaining multiple index variants can exceed hardware capacity.
To mitigate these costs, the industry standard is to default to approximate-nearest-neighbor (ANN) techniques—such
as locality-sensitive hashing, product quantization, and graph-based methods—that trade exactness for efficiency.
Inevitably, these approaches introduce geometric distortion: coarse hashing or coarse quantization disrupt the angular
ordering of vectors and result in reduced recall. Furthermore, ANN techniques are designed to preserve local geometries,
but often ignore the importance of preserving global relations between documents: a property important for out-of-
distribution queries and cross-domain tasks.

Traditional dimensionality reduction provides a clear solution: by projecting embeddings onto a low-dimensional
subspace, that captures the dominant semantic directions, both queries and documents can be compressed into a smaller
representation; and we may perform a search in the reduced space much faster. Truncated SVD (or PCA) is the
canonical approach: it minimizes reconstruction error and thus limits distortion of inner products. However, computing
an exact SVD of an m× d matrix requires O(md2) time and O(md) memory, rendering it impractical for corpora
with millions of entries.

In this work, we first establish that a randomized SVD algorithm recovers the dominant k-singular subspace in O(mdk)
time and O(mk) space, achieving SVD-level geometry preservation with a provable worst-case bound on inner
product distortion. Then, we propose an adaptive SVD algorithm, leveraging approximate leverage-weighted Gaussian
probes for residual estimation, allowing the randomized SVD algorithm to run without a prior fixed rank, allowing
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the deployment of this system for large corpora, where information about the spectral decay of the documents is not
known. We demonstrate that our approach compresses embeddings with moderate preprocessing speed, and outperforms
standard ANN baselines in retrieval quality as a result of global geometry preservation.

The rest of this paper is organized as follows: in section 2, we explore current ANN methods and dimensionality
techniques. In section 3 we describe our algorithm and establish that it is an acceptable replacement for a deterministic
SVD. We show empirical results on several datasets in section 4, and discuss the implications of this work and suggest
future directions in section 5.

2 Related Work

2.1 Exact Low-Rank Methods

Truncated SVD (or equivalently PCA) finds the best rank-k approximation Mk to a data matrix M ∈ Rm×d by
retaining the top k singular vectors Eckart and Young (1936). By the Eckart–Young theorem, this subspace minimizes
the Frobenius norm ∥M − Mk∥F and therefore also bounds the worst-case dot-product error between any two
rows. However, classical SVD algorithms cost O

(
md2

)
and requires random access to the full matrix, making them

impractical for modern web-scale corpora.

2.2 Approximate Nearest Neighbors

Locality-Sensitive Hashing (LSH). Gionis et al. (1999) utilize a hashing scheme to reduce the time complexity of
vector search. Angular LSH hashes each vector to a binary signature by random hyperplane tests, so that Hamming
distance approximates cosine similarity. LSH offers sub-linear lookups and minimal memory, but sign-based discrimi-
nation can flip bits under small perturbations. In addition, LSH provides results in expectation, but has no bounds on
worst-case performance.

Product Quantization (PQ). PQ splits a d-dim vector into M blocks and quantizes each block to one of 2b centroids
Jégou et al. (2011). Dot-products reduce to fast table look-ups, but block-wise quantization error can distort angular
geometry and degrade zero-shot retrieval.

2.3 Randomized Methods for Dimensionality Reduction

2.3.1 Gaussian Random Projections

The most naïve method of dimensionality reduction with inner product guarantees is the Gaussian random projection
and its variants (e.g. database-friendly random projections Achlioptas (2003)). Via the Johnson-Lindenstrauss Lemma
(Johnson and Lindenstrauss (1984)), inner products are distorted by a factor related to the projection dimension with
high probability. However, random projections are oblivious subspace embeddings and do not take into account the
nature of the data. As a result, less important and more important directions are not treated differently by the random
projection, resulting in worse performance than data-aware compression methods at low rank; indeed, we see this
empirically (Table 1, Table 2, Table 3).

2.3.2 Randomized SVD (RandPI-QR)

To overcome SVD’s prohibitive time complexity, randomized algorithms utilize sketching and power iterations Halko
et al. (2011); Liberty (2013). The standard algorithm (written out in 1) proceeds as follows:

1. Gaussian sketch: draw Ω ∈ Rd×(k+p) with i.i.d. N (0, 1) entries (oversampling p ≈ 10), and compute

Y = M Ω, O
(
md (k + p)

)
.

2. Power iterations: repeat q rounds to amplify the spectral gap,

Y ←M (M⊤Y ), O
(
q md (k + p)

)
.

3. Orthonormalization: perform a thin QR

Y = Qr R, Qr ∈ Rm×(k+p), O
(
m (k + p)2

)
.

4. Truncation: let Qk = Qr[:, 1:k] ∈ Rm×k as an approximate top-k basis.
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Algorithm 1 Randomized Power Iteration QR Decomposition (RandPI-QR)

Require: embedding matrix M ∈ Rn×d, target rank k, oversampling p, power iterations q
Ensure: Q ∈ Rd×k, the approximate top-k right singular vectors of M

1: Set Ω i.i.d.∼ N (0, 1) ∈ Rd×k

2: Y ←M⊤Ω
3: for i = 1 to q do
4: Y ←M⊤MY
5: end for
6: Q,R← qr(Y )

2.4 Worst-Case Guarantees

Randomized SVD methods provide spectral-norm bounds ∥M −QQ⊤M∥2, which are directly translated into inner-
product bounds. Tropp (2011) show that with oversampling p and q power-iterations, RandPI-QR satisfies with
probability 1− 3e−p: ∣∣⟨u, v⟩ − ⟨Q⊤

k u, Q
⊤
k v⟩

∣∣ ≤ (
1 + 9

√
k

p−1

) 1
2q+1

σk+1 ∥u∥2 ∥v∥2,

where σk+1 is the (k + 1)-th singular value of M . This bound directly ties worst-case cosine distortion to the spectral
tail, providing a principled knob for the rank-vs-accuracy trade-off in retrieval.

2.5 Empirical Justification for RandPI-QR

Empirically, we see that a randomized SVD approaches performs similarly to full SVD for recall (4), and that they
preserve global geometry (Figure 5).

3 Methods

We start with a document-embedding matrix M ∈ Rn×d (n documents, each a d-vector). Via 1 we build Q ∈ Rd×k,
and construct the compressed embedding matrix M ′ = MQ ∈ Rn×k. We generate a query embedding from a natural
language query with the same method that document embeddings are generated q ∈ Rn, and compress it so that
q′ = Q⊤q ∈ Rk. All documents and queries (compressed and uncompressed) are assumed to be ℓ2 normalized.

Note that for unit vectors, dot product and cosine similarity are equivalent. Since a nearest neighbors search is based on
cosine similarity, preserving inner product with high probability is directly related to preserving search results in the
compressed embedding space.

However, in real application scenarios, the singular values of the embedding matrix are not known beforehand and
the crucial task of choosing k is difficult. Thus, we propose 3, an adaptive block version of 1. From subsection 2.4,
inner product distortion is directly controlled by the spectral norm of the residual matrix σk+1. Thus, to control inner
product distortion, we adapt the adaptive spectral norm stopping algorithm of Halko et al. (2011), with the modification
of drawing Gaussian probe vectors anisotropically. We describe the motivation behind, and benefits of this approach
in subsection A.1. Note that computing exact leverage scores of M is prohibitively expensive: we may maintain all
benefits of anisotropic sampling by constructing Σ = diag(ℓ̂1, ℓ̂2, . . . ), where {ℓi} are approximate leverage scores
computed via a single-pass randomized sketch (e.g., the algorithm of Drineas et al. (2012)).

4 Experiments and Results

4.1 In-Domain Retrieval Performance

1 and 2 summarize the in-domain retrieval performance on SciFact and SciDocs. On the much larger 25 764-document
SciDocs collection, the pattern holds: RandPI–QR’s preprocessing clock-time is 0.043 s versus 2.124 s for FullSVD,a
49× speedup,while its Recall@10 of 91.85 % trails FullSVD’s 92.39 % by only 0.54 pp. In large-scale deployments, a
two-second indexing step may be tolerable for nightly batch updates; however, in any scenario requiring more frequent
or on-the-fly index refreshes,such as continuously scraping news articles or user-generated content,this gap becomes a
practical bottleneck. Our results suggest that RandPI–QR can collapse this barrier, enabling near real-time subspace
updates that retain essentially full retrieval fidelity.
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Algorithm 2 Block RandPI–QR Step

Require: M ∈ Rn×d, current basis Q ∈ Rd×k, block size b, oversampling p, power iterations q
Ensure: extended basis Qext ∈ Rd×b

1: Set Ω i.i.d.∼ N (0, 1) ∈ Rn×(b+p)

2: Y ←M⊤Ω
3: for i = 1 to q do
4: (Y ←M⊤MY
5: end for
6: if Q ̸= ∅ then
7: Y ← Y −QQ⊤Y
8: end if
9: Qnew, R← qr(Y )

10: return Qnew

Algorithm 3 Leverage-Weighted Gaussian Range Finder

Require: M ∈ Rn×d with ℓ2-normalized rows, block increment ∆k, oversampling p, power iterations q, spectral
norm target ϵ, failure probability δ, maximum rank Kmax, Gaussian probes per check m

Ensure: Q ∈ Rd×k, the approximate top-k right singular vectors of M , stop rank k
1: Q← [∅]; k ← 0
2: ℓi ← 1 ∀ i = 1, . . . , n; Σ← diag(ℓ)
3: while k < Kmax do
4: Qnew ← BlockRandPIQRStep(M , Q, ∆k, p, q)
5: A←MQnew

6: for i = 1, . . . , n do
7: ℓi ← ℓi − ∥A(i)∥22
8: end for
9: Σ← diag(ℓ)

10: R←M(I −QQT )
11: for j = 1, . . . ,m do
12: ωj ∼ N (0,Σ)
13: yj ← ω⊤

j R
14: end for
15: if maxj ∥yj∥2 ≤ ϵ then
16: break
17: end if
18: Q← [Q,Qnew]; k ← k +∆k
19: end while
20: return Q, k

Comparing to randomized projections (JL) and popular ANN accelerators highlights why RandPI–QR is uniquely
suited for high-quality, compressed retrieval. A vanilla Gaussian random projection to 256 dimensions processes in 20
ms (comparable to RandPI–QR) but delivers only 66.80 % recall on SciFact and 70.43 % on SciDocs,losses of over
20 pp,because JL focuses on preserving pairwise distances in expectation rather than aligning with the actual data
spectrum. Conversely, LSH and PQ achieve faster search at the cost of either high indexing overhead or poor recall:
LSH takes nearly a full second to build on SciFact and PQ over one second on SciDocs, yet neither method exceeds
85 % recall on-domain. In contrast, RandPI–QR occupies the sweet spot where spectral alignment preserves the most
semantically important directions while randomization drives computational efficiency.

Of course, there are caveats. All experiments fix k=256; different applications may trade off recall versus index size or
speed by tuning k (and the oversampling p) to their specific latency and accuracy requirements. Our prototype runs
on a single 32 GB GPU, and while QR and mat-mul operations are fully GPU-parallelizable, truly enormous corpora
(hundreds of millions of passages) will still demand sharding or streaming to fit memory constraints. Finally, we report
end-to-end single-query search times; in batched or multi-user settings, further speedups arise by reusing the same Q
basis multiple times or by vectorizing many queries.

4



Table 1: Retrieval Performance on SCIFACT – 5,183× 768.
Method Recall@10 CosDist Preproc (s) Search (s)

Vanilla Retrieval (Baseline) 1.0000 0.0000 0.0000 0.0603
FullSVD 0.9487 0.0064 0.5252 0.0461
RandPI-QR (q=2) 0.9447 0.0070 0.0127 0.0462
RandPI-QR (q=0) 0.8817 0.0164 0.0101 0.0456
Gaussian Random Projection 0.6680 0.0498 0.0200 0.0453
Locality-Sensitive Hashing (LSH) 0.8433 0.0000 0.9097 0.0376
Product Quantization (PQ) 0.7713 0.0311 1.0957 0.0355

Table 2: Retrieval Performance on SCIDOCS – 25,764× 768.
Method Recall@10 CosDist Preproc (s) Search (s)

Vanilla Retrieval (Baseline) 1.0000 0.0000 0.0000 1.0120
FullSVD 0.9239 0.0095 2.1240 0.8774
Rand-PIQR (q=2) 0.9185 0.0102 0.0433 0.8685
Rand-PIQR (q=0) 0.8591 0.0217 0.0321 0.8777
Gaussian Random Projection 0.7043 0.0501 0.0698 0.8670
Locality-Sensitive Hashing (LSH) 0.8515 0.0000 1.5597 0.4901
Product Quantization (PQ) 0.7454 0.0301 5.4508 0.4638

4.2 Cross-Domain Retrieval Performance

Table 3 reports retrieval quality when we apply SciDocs queries (embedded and compressed in the same way as before)
against the SciFact document corpus. This scenario simulates a mild domain shift, both datasets concern scientific text,
but SciDocs focuses on long technical articles while SciFact contains concise claim–evidence pairs, so it tests whether
our compression schemes generalize beyond the exact training corpus.

Table 3 reports retrieval quality under SciDocs to SciFact domain shift: RandPI-QR with power-iterations matches
FullSVD closely, while other compression methods lose substantially more recall.

These results underscore two key observations. First, spectral sketching with QR and power-iterations remains the
most robust practical compression method under mild domain shift, preserving 80.9% recall compared to 82.1% for
exact SVD while incurring only a 0.16 s increase in search time. By filtering query noise into the corpus’s dominant
singular subspace, RandPI–QR generalizes better than purely data-agnostic Johnson–Lindenstrauss embeddings or
hash-based discretizations. Second, the performance gap between RandPI–QR and simpler RandPI-QR (no power
iterations) widens in cross-domain retrieval (11%vs. 6%in-domain), highlighting the value of power iterations in
tightening inner-product distortion bounds when the query distribution shifts.

Nevertheless, this cross-domain experiment has limitations. SciDocs find SciFact overlap in topical vocabulary, so the
domain mismatch is moderate; we expect larger shifts (e.g. finance vs. biomedical text) to amplify recall degradation
for all methods. Moreover, our analysis focuses on average Recall@10; tail behavior (e.g. worst-case queries) and
downstream impact on LLM retrieval-augmented generation remain to be studied. Finally, we fix rank k = 256 and do
not adapt the sketch dimension to domain divergence; adaptive oversampling or power iteration depth may yield further
robustness at marginal cost.

In sum, Table 3 demonstrates that RandPI–QR achieves recall within 1.2%of exact SVD under cross-domain retrieval,
while requiring only a fraction of the precomputation time and preserving semantic geometry far better than LSH,
PQ, or random projections. This balance of generalization, efficiency, and theoretical distortion guarantees makes
RandPI-QR a compelling choice for compressed retrieval in heterogeneous settings.

4.2.1 Zero-Shot Generalization

In many realistic retrieval-augmented generation (RAG) pipelines, the retriever must handle queries that come from
thematic domains not seen during index construction. To evaluate this capability, we designed two “zero-shot”
generalization experiments (Figure 1). First, we selected the FiQA finance dataset as our in-domain benchmark and
NFCorpus (consumer finance questions) as an out-of-distribution counterpart. Second, we used SciFact (scientific claim
verification) as the in-domain data and SciDocs (scientific document retrieval) as its semantically similar counterpart.
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Table 3: Retrieval Performance on SciDocs queries against the SciFact corpus – 5,183× 768.
Method Recall@10 CosDist Preproc (s) Search (s)

Vanilla Retrieval (baseline) 1.0000 0.0000 0.0000 0.1976
FullSVD 0.8212 0.0064 0.5487 0.1554
RandPI-QR (q=2) 0.8088 0.0067 0.0148 0.1572
RandPI-QR (q=0) 0.6918 0.0173 0.0111 0.1473
Gaussian Random Projection 0.2991 0.0498 0.0223 0.1556
Locality-Sensitive Hashing 0.6643 0.0000 0.9789 0.1307
Product Quantization 0.5246 0.0311 1.2137 0.1440

In each case, we indexed the in-domain document corpus with each compression method (LSH, PQ, RandPI-QR) and
then measured Recall@10 and query-latency for both in-domain and cross-domain queries.

Figure 1: Out of Distribution Queries (Finance and Biology)

Figure 2: Semantically Similar Dataset Queries (Science and Science)

Figure 1 shows in-domain FiQA retrieval: all compressed methods match the uncompressed baseline. Under cross-
domain NFCorpus queries, every method suffers a recall drop, but RandPI-QR degrades noticeably less than LSH or
PQ. At the same time, all compressors cut query latency by roughly half compared to the uncompressed index.

Figure 2 presents the analogous experiment in the scientific domain (applying SciFact to SciDocs). Again, compression
schemes perform equally well in-domain, then lose recall when queries shift. RandPI-QR exhibits the smallest recall
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loss and only a modest increase in search time, whereas LSH and PQ both incur larger accuracy drops and similar or
higher latency penalties.

Across both finance and science zero-shot tasks, RandPI-QR consistently achieves the best trade-off between retrieval
fidelity and speed. It retains more of the original recall under domain shift and delivers substantial query-time savings,
making it well suited for RAG systems that must generalize to unseen query distributions.

These experiments illustrate that RandPI-QR’s spectral sketching and power-iteration pipeline confers both high fidelity
in-domain retrieval and superior robustness to domain shifts, outperforming static quantization or hashing. Nonetheless,
limitations remain. First, both SciDocs and NFCorpus share partial topical overlap with their in-domain benchmarks;
truly disjoint domains (e.g. finance vs. biomedical) could yield larger recall collapses. Second, we fix the projection
rank k = 256 and power-iteration count q = 2; adaptive tuning based on query-document divergence may improve
cross-domain recall at marginal cost. Finally, our evaluation focuses on aggregate Recall@10 and mean latency;
downstream effects on generation quality and worst-case retrieval errors warrant further study.

In summary, the zero-shot results confirm that RandPI-QR strikes a favorable balance: it nearly matches exact SVD
in-domain, reduces query time by over 50 %, and performance does not degrade too quickly when queries depart from
the original corpus distribution.

4.3 Noise Robustness

In many practical retrieval settings,such as voice-based assistants or OCR pipelines,queries arrive with measurement
noise or slight perturbations in their embedding space. To quantify how compression methods tolerate such stochastic
corruption, we conducted a “noise robustness” experiment in which we add isotropic Gaussian noise of varying standard
deviation σ to each query embedding and measure the resulting drop in Recall@10 relative to the uncorrupted baseline.

Concretely, let qi ∈ Rd be the original, ℓ2-normalized embedding of query i, and let

q̃i(σ) =
qi + σ ηi
∥qi + σ ηi∥2

, ηi ∼ N (0, Id).

We evaluate Recall@10 on the fixed SciDocs corpus for noise levels

σ ∈ {0.01, 0.05, 0.1, 0.2, 0.5},

and define the recall drop
∆(σ) = 1− Recall@10

(
q̃i(σ)

)
averaged over n = 200 test queries. We compare three compressed retrieval schemes,LSH, PQ, and our RandPI-
QR sketch with two power-iterations (“RandPI-QR”),against the uncompressed baseline (which itself loses up to
≈ 1− Recall@10vanilla under noise, but this vanilla drop is subsumed into each curve’s intercept).

Figure 3 shows the degradation curves: RandPI-QR consistently suffers the smallest recall losses up to moderate noise,
whereas LSH and PQ degrade more sharply, and all methods converge toward random performance at high noise.

These findings confirm that preserving the dominant spectral subspace via RandPI-QR confers intrinsic robustness to
small-to-moderate noise: by projecting noisy queries onto a low-dimensional basis aligned with the corpus’s top singular
directions, our method effectively filters out orthogonal noise components. In contrast, LSH’s binary hyperplane hashing
and PQ’s block-wise quantization amplify angular perturbations into large retrieval errors even under modest noise
levels.

Nevertheless, our noise model is idealized: real-world corruption may be structured (e.g. adversarial, heteroscedastic, or
domain-shifted) rather than i.i.d. Gaussian. Plus, we fix the sketch rank k = 256 and do not explore how varying k
trades off noise immunity against approximation error. Finally, we focus exclusively on Recall@10; robustness with
respect to other ranking metrics or end-to-end downstream tasks (e.g. RAG accuracy) remains to be studied.

In summary, the noise robustness experiment highlights that RandPI-QR’s spectral filtering,underpinned by our inner-
product distortion bounds,yields measurably better tolerance to random perturbations than sign- or centroid-based
compression schemes, reinforcing its suitability for noisy retrieval scenarios.

4.4 Paraphrastic Robustness

To assess how well compressed retrieval methods withstand natural linguistic variation, we measured Recall@10
degradation under a strong paraphrastic perturbation. Specifically, for each of the first n = 200 queries in the SciFact
test set, we generated a back-translation into French and back into English using a MarianMT pipeline. This process
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Figure 3: Recall@10 drop ∆(σ) under isotropic Gaussian noise of standard deviation σ added to query embeddings.

Table 4: Recall@10 drop under paraphrase perturbation. The “Vanilla” row shows the irreducible drop due to back-
translation alone; each method’s additional error δM quantifies its approximation cost.

Method Raw Drop ∆M Vanilla Drop Extra Drop δM

Vanilla Exact Search 0.3690 0.3690 0.0000
RandPI-QR (q=2) 0.4080 0.3690 0.0390
RandPI-QR (q=0) 0.4310 0.3690 0.0620
Locality-Sensitive Hashing 0.4300 0.3690 0.0610
Product Quantization (PQ) 0.4880 0.3690 0.1190

yields paraphrases q̃i whose meanings closely match the originals qi but whose surface wordings differ. We first
establish the vanilla drop

∆vanilla =
1

n

n∑
i=1

(
1− Recall@10(qi, q̃i)

)
= 0.3690,

using an exact FAISS cosine index on the uncompressed SciDocs document embeddings. This figure represents the
irreducible recall loss due solely to paraphrasing, independent of any compression.

Next, we build each compressed retrieval index,including RandPI-QR (our method), RandPI-QR without power-
iterations, LSH, and PQ,on the clean SciDocs corpus once, then measure the average drop

∆M =
1

n

n∑
i=1

(
1− Recall@10M (q̃i)

)
for each method M . Table 4 reports both the raw drop ∆M and the extra drop δM = ∆M −∆vanilla attributable to
approximation error.

The results show that our RandPI-QR approach incurs only an additional 3.9%drop in Recall@10 beyond what back-
translation induces, compared to roughly 6.1%for both raw RandPI-QR and LSH, and 11.9%for PQ. In other words,
adding two power-iterations to the randomized sketch reduces the extra recall loss by approximately 35 % relative to a
plain Gaussian sketch or sign-based hashing.s

Nonetheless, several limitations should be acknowledged. First, back-translation is only one form of query variation;
synonym substitution, typos, or cross-domain language may yield different vanilla drops and residuals. Second, our
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sample of 200 queries yields standard errors of about 0.01 in these averages, so larger-scale tests would improve
precision. Finally, we focus exclusively on Recall@10; other ranking metrics such as mean reciprocal rank or NDCG
might expose different trade-offs.

Despite these caveats, the residual-drop framework clearly separates paraphrase-induced noise from sketch-
approximation error, demonstrating that RandPI–QR with a small number of power-iterations best preserves retrieval
quality under realistic linguistic perturbations.

5 Conclusion

In this work, we introduced Block RandPI-QR, a spectrum-adaptive randomized SVD algorithm that incrementally
builds a low-dimensional basis via leverage-weighted Gaussian probes and an adaptive stopping criterion based on
the spectral norm of the residual. Our method achieves SVD-level geometric fidelity in O(mdk) time and O(mk)
space, without requiring prior knowledge of the singular value spectrum. Empirical evaluations on SciFact and SciDocs
demonstrate that our approach preserves cosine recall within one percentage point of exact truncated SVD while
reducing preprocessing time by one to two orders of magnitude. Furthermore, under domain shift, noise corruption, and
paraphrastic perturbations, spectrum-adaptive sketching consistently outperforms data-agnostic random projections,
LSH, and PQ, validating its robustness for real-world retrieval-augmented pipelines.

It is important to note the limitations of this method, however. Namely, for large document corpora, LSH search is
still faster than RandPI-QR. In our empirical validations we were limited by compute, and were unable to test on
large datasets such as MS-MARCO. Future directions for this approach include a hybrid algorithm combining an
initial RandPI-QR compression, followed by an ANN search for speed. Distributed implementations and streaming
implementations are also of interest.
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A Proofs

A.1 Motivation behind probe vector sampling in 3

Consider M ∈ Rn×d = UΣV ⊤, r .
= rank(M), where Σ = diag(σ1, . . . , σr).

A.1.1 Expectation of Single-Probe Residual

We draw a single probe vector ω ∈ Rd with

E[ω] = 0, Cov(ω) = Σω ≻ 0.

Form
y = M ω ∈ Rn,

and project M onto the one-dimensional subspace spanned by y via

Py =
y y⊤

∥y∥22
, PyM =

(Mω)(ω⊤M⊤M)

ω⊤(M⊤M)ω
.

The residual is
R = (I − Py)M,

and its squared Frobenius norm satisfies

∥R∥2F = ∥M∥2F −
ω⊤(M⊤M)2 ω

ω⊤(M⊤M)ω
.

Taking expectation,

E
[
∥R∥2F

]
= ∥M∥2F − E

[ω⊤(M⊤M)2 ω

ω⊤(M⊤M)ω

]
.

Via Marchenko–Pastur,

E
[ω⊤A2 ω

ω⊤Aω

]
=

Tr(AΣω)

Tr(Σω)
, A ≻ 0.

Setting A = M⊤M yields

E
[
∥R∥2F

]
= ∥M∥2F −

Tr
(
(M⊤M) Σω

)
Tr(Σω)

.

A.1.2 Isotropic vs. Column-Norm–Weighted Sampling

Isotropic probes:

Σω = Id. Then
Tr

(
(M⊤M) Id

)
= ∥M∥2F , Tr(Σω) = d,

so

Eiso[∥R∥2F ] = ∥M∥2F −
∥M∥2F

d
= ∥M∥2F

(
1− 1

d

)
.

Anisotropic (col-norm–weighted) probes:

Σω = diag(∥c1∥22, . . . , ∥cd∥22), where cj is column j of M . Then

Tr
(
(M⊤M) Σω

)
=

d∑
j=1

∥cj∥42, Tr(Σω) =

d∑
j=1

∥cj∥22 = ∥M∥2F ,

and hence

Eaniso[∥R∥2F ] = ∥M∥2F −
∑d

j=1 ∥cj∥42
∥M∥2F

.

By Cauchy–Schwarz,
∑

j ∥cj∥42 ≥
1
d∥M∥

4
F , with strict inequality if the ∥cj∥ are not all equal. Therefore

Eaniso[∥R∥2F ] < Eiso[∥R∥2F ].
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A.1.3 Extension to kp > 1

The same trace-maximization argument extends to kp independent probes: the leading-order term in E[∥M −
P[y1,...,ykp ]

M∥2F ] depends only on Tr((M⊤M) Σω), so col-norm weighting strictly outperforms isotropic sampling at
every kp.

Because real embedding matrices have nonuniform column norms, sampling with Cov(ω) = diag(∥cj∥22) captures
more energy in expectation and yields strictly lower projection error than isotropic Gaussian probes for any probe count
kp.

A.1.4 Emprical Results

Evaluated on a test matrix of rank=50, we show that anisotropic probing gives consistently lower error than isotropic
probing for kp (the number of probes) less than the rank. For kp greater than or equal to the rank of the matrix, both
perform with low error and the performance difference is negligible.

B Empirical Justification for Randomized SVD Methods

B.1 Rank Preservation

Figure 4: Recall vs. Rank for randomized SVD and full SVD methods on the BEIR-TREC-COVID dataset.
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B.2 Geometry Preservation

Figure 5: Geometry preservation for randomized SVD compression on several datasets.

C Experimental Details and Code

All experiments were averaged over 30 trials, with ±1 standard deviation. All code used for experiments is available at
https://github.com/divitr/260proj.
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